• T
  • H
  • M
  • Why Do We Have Sacroiliac Joints?

    Nutation and Counter-Nutation are not movements of the pelvis

    They are movements of the sacrum relative to the pelvis.

    The sacrum (and tailbone) form the bottom of the spine. The sacrum connects to the two hip hip bones at the sacro-iliac joints. It’s the downward pointing triangle of bone whose tip ends up just behind the anus.

    The sacroiliac joints are what allow the sacrum to move relative to the two halves of the pelvis.

    Because of the design of the joints and how the hip bones and sacrum fit together, movements of the sacrum relative to the pelvis also cause the hip bones to move relative to each other.

    Movements of the Sacrum Relative to the Hip Bones (and Vice Versa)

    Two references that are important for describing this movement are the ASICS and Ischial Tuberosities.

    Two Sets of Reference Points for the Pelvis

    If you put your hands on the front corners of your belly, about an inch below the belly button, you can feel two sharp or pointy bones. If you are overweight, you can approach these bones from the side. These are the fronts of the iliac crest and are referred to as the Anterior Superior Iliac Crest (ASIC).

    The Ischial Tuberosities, or sitting bones, are the two bones you can feel when you sit on a hard seat.

    Looking at the pelvis from the side, and viewing it as a rough square or trapazoid, if the pubic bone and sacro iliac joints form two opposite corners of this square, then the ASICS and Ischial Tuberosities (or ITs or Sitting bones) form the other set of opposite corners.

    Warping the Pelvis

    The hip bones connect directly to each other via the pubic synthesis, what we tend to think of as the pubic bone.

    Because the two hip bones hinge at the pubic synthesis and at each Sacroiliac joint:

    • a nodding movement of the sacrum (nutation) causes the ASICs (and the top of the sacrum) to move inwards and the Sitting bones (and the bottom of the sacrum) to move outwards.
    • A backwards nod (counter nutation) of the sacrum causes the ASICs (and the top of the sacrum) to move outward and the sitting bones (and the bottom of the sacrum) to move inwards.

    The Muscles that Bend the Pelvis

    Nutation/Nodding can be directly caused by the lower third of the transverse abdominus muscle contracting. It may be helped by an activation of the sacral multifidus (a feeling like "flicking" the tailbone rearwards).

    Meanwhile, Counter-Nutation/Backward-nodding can be directly caused by the pelvic floor muscles activating.

    In my own experience, activation of one set of these muscles automatically causes the other set to activate. You could think of the two (or three) sets of muscles acting against each other to stabilize the Sacroiliac joints (and pubic synthesis).

    In males the movement potential tends to be quite small, in females it tends to be larger. However, the same musculature for moving or stabilizing these three bones exists in both sexes. And even though the movement potential varies across the sexes, the muscular actions that drive these movements can be controlled and felt by both sexes.

    (While I would recommend learning to feel these actions, I would not recommend keeping either set of muscles activated on a regular basis. This applies to any set of muscles. Muscles are mean to activate and relax.)

    Why Make the Pelvis a Flexible Structure? Why?

    Why have this movement potential at the sacroiliac joints in the first place? Why allow the two halves of the pelvis and the sacrum to move relative to each other?

    The body is designed to be maximally strong with minimal use of materials.

    This end is achieved at skeletal joints by allowing bones to move relative to each other so that connective tissues (tension elements) can freely redistribute tension.

    Maintaining Space in Non-synovial Joints

    Non-synovial joints (like the sutures of the skull and also generally termed "fibrous joints") are shaped and tied together by connective tissue in such a way that pressing the two bones towards each other actually causes the tension in the connective tissue to increase in such a way that it resists the bones being pushed together. The more you push the more it pushes back. The same happens if you do the opposite and try to pull the bones apart. Tension increases to resist the pulling.

    The SI joints are partial synovial joints.

    Maintaining Space in Synovial Joints

    Synovial joints use fluid to maintain space and lubricity between the bones they connect.

    They work to keep bones from touching via a fluid filled joint capsule whose tension can be varied by muscle controlled ligaments.

    In this case the control mechanism is a bit more complex, but the bare-bones description is that muscle tension can be increased to add tension to the joint capsule via ligaments and tendons. That in turn increases fluid pressure which acts to resist the bones being pushed together.

    Flexing Your Biceps (And "Stabilizing" your Elbow Joint)

    If you’ve ever “flexed your biceps” like a body builder, you were not only activating your biceps, but also your triceps. The two sets of muscles work against each other to maintain the bend in your elbow. Possibly because you are focused on the biceps (look how big it is), you’ve never noticed that your triceps was active or that your elbow felt “stable”.

    Flexing your biceps (and triceps) with the elbow straight, the action of the two sets of muscles would pull the humerous towards the radius and ulna. The same muscle activation that adds tension to the triceps and biceps (and possibly the forearm muscles that act on the elbow) also sends tension to the ligaments (as well as the tendons) and via the ligaments (and possibly the tendons both) adds tension to the joint capsule. This then adds pressure to the synovial fluid inside the elbow joint which resists the bones being pushed against each other.

    Maintaining Joint Space, In General

    So in the case of pressing two skull bones towards each other, tension within the sutures increases to resist and so maintain space between those bones.

    Synovial joints can respond similiarly.

    When the very muscles that act on the joint activate to squeeze the bones together, the joint capsule adds pressure to the fluid within it to resist the bones being pushed together.

    For a synovial joint, when muscles contract they not only create a gross movement, the tension they create also acts to try to reduce the space between those bones at the joint. And the joint capsule, driven by the same muscle action, responds, by increasing fluid pressure to keep space between the bone.

    Maintaining Space Allows Adjustability (and The Equal Redistribution of Tension)

    While the bones are kept from touching, tension within the joint capsule can be distributed, in part helped by the pressure of the fluid within the joint capsule. (At least that would be the theory) and in part helped by the fact that the bones aren’t touching. Because they aren’t touching (or frictioning), they have some adjustability relative to each other again allowing for the joint capsule to redistribute tension within itself.

    That redistribution doesn't just happen within the joint capsule. The joint capsule may have ligament and tendon connections. And so tension is redistributed to other parts of the body via these connections also.

    But, Back to the Pelvis, It's Broad!

    As a whole, the pelvis is the broadest structure in the body.

    The legs attach to it and the spine. Because of this broadness, force movements acting on the pelvis can be large.

    Adjustability between the hip bones and between each hip bones and the sacrum gives the pelvis enough flexibility to redistribute loads within itself while at the same time functioning effectively as a connecting element between the legs and the spine.

    Because of the flexibility given to the pelvis by the SI joints and the pubic synthesis, the pelvis is strong enough to handle these loads and transmit them. The flexibility given to it by the SI joints means that it can make adjustments within itself while transmitting loads so that the tension elements within itself share the load.

    Optimal Positioning

    Another possible reason for pelvic flexibility is that it could allow for optimal positioning of the hip bones of the pelvis relative to the thighs, particularly in extreme positions like forward or backward bends of the hips. (And even if this movement is slight, it continues to allow effective the redistribution of tension.)

    Extending Your Reach

    As an example of optimal bone positioning, the shoulder blades can more relative to the ribcage depending on how we are using the arms.

    To move the arms forwards the shoulder blades more outwards and forwards relative to the ribcage extending the reach and possibilities of the arms in that direction.

    To move the arms upwards the shoulder blades rotate upwards.

    (If using the shoulder sockets as a reference, this movement could be called supraversion since it causes the “eyes” of the shoulder sockets to look upwards.)

    To move the arms back, you can lead by moving the shoulder blades towards each other. (This movement is called retraction, the opposite movement, moving the shoulder blades outwards and forwards is called protraction).

    Allowing the shoulder blades to move relative to the ribcage means that the muscles that attach the shoulder blade to the arm bones can be in an optimal position to work no matter what the arms are doing (assuming that everything is working optimally.)

    In this case optimal could mean that no muscle is overly long or over short. All muscles are within their optimal working range so that they can activate effectively to help support the arms in whatever they are doing.

    Basically it prevents any muscles from “over-reaching” or being too cramped to work and that may help to keep the shoulder joint from being ripped apart. (Or getting back to "tension distribution" it allows the continual redistribution of tension.)

    Stop Your Impinging Now!!!

    The hip socket is deeper than the shoulder socket and the hips tend to be less mobile than the arms. And so there may be less need for the hip bones to move relative to the spine for optimal muscle length.

    However, near the end ranges of movement it might be beneficial to move the hip bones relative to each other, if nothing else to help prevent bones from bumping into each other.

    Drawing on the shoulder again as an example, there’s a lip of bone above the shoulder socket called the accromion process.

    This bone is an extension of the spine of the scapula. It could serve to protect the shoulder joint.

    But it also serves as an attachment point for muscles and it is also provides an attachment point for the collar bone.

    Whatever the function of this covering of bone, when raising the arm it tends to get in the way. And so to avoid bone to bone contact, this part of the shoulder blade has to be pulled upwards and inwards to give the humerus room to move upwards and inwards.

    At the same time the bottom tip of the shoulder blade moves outwards.

    But getting the accromion process out of the way of the humerous might only be a side effect of this movement, made obvious when people have problems with the two bones bumping into each other.

    Since the accromion process is a point of muscle attachment for the middle trapezius, as well as the delts, this movement of the scapula that is supposed to accompany an arm lift may be more important in preserving muscle function, giving the delts room to contract to help support the arm.

    And the same may be true with movements of the pelvis. In extreme movements like the splits, adjustments of the bones of the pelvis may maintain the operability of the muscles that work on the hip joint (as well as preventing the the greater trochanter of the femur from bumping into the side of the pelvis)

    And that could be important as a mechanism for protecting the integrity of the hip joint.

    Lets Dance!

    If you’ve ever done or seen social dancing, no matter what the dance there are a large proportion of movements where the dancers are connected.

    They hold each other. However, the way they hold each other doesn’t just keep them connected, it maintains a particular amount of space between them.

    Depending on the dance, they position themselves relative to each other so that they can still move freely (adjust) while at the same time moving together. The connection means that they can communicate and act as one while the space means that each has the freedom to move to do what they need to do.

    The better they are at maintaining space and connection, the better they can continue to dance together as one.

    Lead and Follow, Foundation and Expression

    To this end, the male is the lead and the female the follower. This didn’t mean that the male is better or more important than the female. It's more a division of work, driver and navigator.

    Both are required. Both are equally important.
    They are partners in a partnership that is greater than the sum of the parts.

    The lead might signal an inside turn.

    He holds up his hand and positions it in such a way that his hand acts as a foundation and pivot point around which she can turn.

    But rather than just holding his hand up, he feels his hand and via it her, so that he can adjust the position of his hand so that she can turn freely without hurting herself.

    So in a way he is also a follower.

    But he initiates the movement and so acts as the first reference point. (Take this further, in a room filled with dancers, he can be adjusting their position based on the space in the room, so here again he is following, and they are both following the music…)

    Without his decision and without his acting as a foundation, the follower can do nothing. (And without the follower, the leader is nothing.)

    This idea is important in movement.

    At the hip the pelvis can be relatively still and act as a foundation for the femur and leg bones. Or the femur can act as a foundation for a movement of the pelvis (and in turn for a movement of one part of the pelvis relative to another part).

    • In one case hip muscles have the pelvis as a foundation from which to work on the leg.
    • In the other they have the leg as a foundation from which to work on the pelvis (the hip bone and the sacrum).

    In either case, one bone can act as a reference for positioning of the other element, so that muscles have optimal length but also so that muscles can act effectively because they have a stable foundation.

    If muscles have a stable foundation from which to act and optimal length, not only can they effectively control bony relationships, they can also effectively control joint capsule tension.

    Thus, assuming a stable foundation, movements at the sacrum can be to give muscles optimal length so that not only do they integrate the Sacroiliac joint but the hip aswell.

    Strengthen Arms and Legs,
    Improve Body Awareness

    Frictional Arm and Leg Strength, Neil Keleher, Sensational Yoga Poses.

    Frictional muscle control helps you to strengthen your arms and legs.

    If you aren't very strong, you'll learn how to get strong
    and improve body awareness at the same time.

    And you'll learn to use your body intelligently, even as you strengthen it.

    Learn Your Body with
    Frictional Arm and Leg Strength

    • PDF: $24.00
    • Videos: $26.00
    • Both: $28.00

    Find Out More or
    Purchase